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ABSTRACT

The time-harmonic analysis of three boundary value problems con-

taining semi-infinite boundaries is presented. The first problem considered

is a parallel plate waveguide with one plate truncated and radiating into free

space. The excitation of a dielectric slab and the excitation of an isotropic,

incompressible, plasma slab by means of a parallel plate waveguide with

one plate truncated are the second and third problems analyzed. respectively.

Both TE and TEM polarizations are tonsidered in these open-region problems.

A function of a complex variable is factored in each of these Wiener-

Hopf type boundary value problems. The function is analytic in a strip and is

factored into a product of two functions. One of these functions is analytic in

a half-plane while the other is analytic in the adjacent half-plane with an over-

lap in the regions of analyticity coinciding with the strip. This factorization is

obtained by a technique developed in this work.

The technique obtains the factorization for the open-region problem

"from a function and its factorization that occurs in a related closed-region

problem. A closed-region problem is one whose transverse dimensions are

finite. The chosen closed-region boundary value problem yields a function of

a complex variable which can be factored. The factorization of the function

for the open-region boundary value problem is obtained by taking the limit, as

a parameter approaches infinity, of the function and factorization appropriate

to the closed-region structure. By this means the factorization and hence the

solution to the open-region boundary value problem is obtained.



It is also founc i nat the limniting procedure may be used to obtain more

than just the open-region factorization. It is shown that the limit of the com-

plete closed-region solution becomes the open-region solution. Hence, this

yields oiAe possible method for the solution of problems of this type.

The results of the numerical computations are presented. These in-

clude the average power ref'lected in the waveguide, the average power radiated

in the space wave, the average power transmitted by the surface waves, and

the radiation pattern of the space wave.
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1. INTRODUCTION

The timc-har.r.onic analys, s nf certain rsdi 'Aion and di-ffraction prob-

lem:! with semi--.nfin;.te boundarie5 requires solutions of the steady-state wave

equation satisfying various boundary conditions. This class of problems -s con-

ventionally formulated in terms of the Wiener-Hopf technique, that is, at some

point m the analysis a complex variable equation is 'solved by analytic continua-

tion, An exhaustive discussion and numerous illustrations of this techniquc may

be found in Noble [1958 1.

Difficulty v.-th 1i,. Wi-ner-.Hopf technique is encounterod because a fac-

torization o.' a function o( a complox variable must be made. This function of a

complex var:able, hicn is analvytc in a strip, must be factored into a product

of two func,..ons. One !u.nction o'. tl-- p.od'uct is analytic in a half.-plane while

the ot-'or is analytic m t.he adiacent hal -plane, .v.t.h an overlap in tlhe regions of

analyticity co:ncidi.ng with the strip.

In this work a C-R boundary value problem will refer to a closed-region

boundary value problem (onP whose transverse dimensions are finite; see Fig. 2,

for example). An 0-R boundary value problem means an open region boundary

value problem (one in which radiation may occur; see Fig. 1, for example).

The factorizaton in the case of a C-R boundary value problem may be

obtai-nd by using the infinite product cxpansion of an integral (entire) function

sec for example Titchrnarsh 119321. "'Iis results from the fact that the function

is a ratio of two integral functions. "'T'e function to be factored in the case of an

Lt v~jciablee C OPY
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O-R boundry value problem contains branch line singularities and recourse to a

formal factorization procedure, for example Noble [1958], may be made. How-

ever. as usually occurs with such procedures, specific results are difficult to

obtain except in a few simple cases.

The possibility of attacking an O-R boundary value problem through a

related C-R boundary value problem, which by its nature is easier to analyze,

has been suggested 4nd attempted to a limited extent by various authors. Noble

[1958] expressed interest in knowing how far the results for a parallel plate

duct (semi-infinite parallel plate waveguide) enclosed in a larger paraliel plate

waveguide, with a finite (but large) spacing between the plates, could be used to

approximate the results near the mouth of the parallel plate duct when radiating

in unbounded space. Talanov [1959], desiring the analysis of surfave wave

lauinching in a dielectric slab backed by a perfect conductor by means of a semi-

infinite parallel plate waveguide, enclosed the O-R structure in a larger parallel

plate waveguide. This procedure reduced the O-R structure to a C-R structure.

He then analyzed this C-R structure and calculated the desired field quantities

for increasing ,values of the spacing between the plates of the parallel plate wave-

guide. He suggested that the results obtained for the C-R structure are in the

limit, as the spacing between the plates of the parallel plate waveguide becomes

large, the results of the O-R problem. Mittra and Karjala [1964] showed that

the expression for the reflection coefficient of a parallel plate duct enclosed in a

larger parallel plate waveguide yields, in the limit of the waveguide walls ap-
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proaching infinity, tOe ,-pr,-s;ion for :.a r,'.lection coefficient ri th. duct when

radiating into 'ree space. Mittra awid 11iriB]aricum [1)65] nurer'cally calcu-

lated the ieflection coefficient in the duct enclosed in the larger parallel piate

wavegu'de and showed that the numefrical -alues approached, as the spacing of

the plates of t&e wavegul-le be'carie larg,., tPp known numer'cal value of th,- re-

flection coefficient for the duct radiating into free space. Mittra and Bates

[1965] used a limiting procedure to obtain an extension of the function-theoretic

technique introduced by Wlitehead [1Q51]. The 1l..imit, as a dimension became

infinitely large, of a certain function that occurs In a related C-R problem ga-.-e

the desired unknown function neces.arv in thbe O-R problem. The mod, match-

ing technique was used in that analysis.

The extension of a C-R bou.ndavv valxe problem solution to vicld the

solution of an O-R boundary valup problrm ;s ex-pected i' one Iak9s into account

the physical ph,,onomenon occurring. .For example, cons.dpr a source in a par-

allel plate waveguide wherp the medium has a sligh: loss. At any location A

within the waveguide the field is road- up oý t-wo componer-t F: a direct wave, from

the source and reflected wa'.es frorr, the boundarv. T ne nagn'.,ude of th4 re-

flected waves at A, as the spacing of 0ý,, waveguide walls approaches infn.:ty,

would approach zero due t.o the loss in the ýrredjum_. T!'rejore, point A 'V'.uld

see only the incident field in the limi.t. T!at is, we are I t witb source radiat-

ing in an unbounded region. TIhe idea of a slight loss in the medium is not re-

strictive. When th9 analysis is completed the loss is permitted to be as ,mall
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as desired, in fact, zero. The inclusion of the loss is usually used regardless

of the method of Polutioi, of these problerr.3.

This work det.ermines a method by which the O-R factorization may be

obtained from a related C-R problem. Thf, method involves a limit, as a pa-

rameter approaches infinity, as suggestcd by the physics of these problems.

The chosqn C-R bound.&ry value problem yieids a function of a complex variable

which cin be factored. The factorization of the function for the O-R boundary

value problem is obtained by takhig the limit, as the transverse dimension ap-

proaches infinity, of the function and factorization appropriate to the chosen C-R

structure. By this means the factorization and hence the solution to the O-R

boundary value problem is obtained.

It is found that the limTitizrg procedure may be used to obtain more than

just the O-R factorization. It is shown that the limit of the complete C-R solu-

tion becomes the O-R solution. Herce, this yielis one possible method for the

solution of problems of this type. This is a rather useful method as the C-P. so-

lution is usually read-ly obtained.

Obviously there is more than one possibility for the choice of a C-R

structure. However, the results obtained for the O-R structure are uniaue since

the O-R solution is a limit point of the C-R solutions. This result is expected

from the physics of the problem which implies that the field reflected from a

boundary that is receding to infinity in a lossy medium will be zero in the vicin-

ity of the source. Hence, the boundary condition satisfied by the i'uundary that



5

that recedes to infinity in the C-R structur- is irnmaterial.

T}-, first problem d'.scussed ,s the ana]ysis of the fields associated

with a parallel plate wa-.;eguide hav'ng tl"e top plate term.Aated (semti-infinite).

The solution is obta-ned r In closed form and thus the method is clearly demon-

s*rated. Tbe fa~tor;zation is verified by reference to the solo:..on for the

fields oi a paý al]el plate duct obtained by Noble [19581, since the functicn fo be

factored s t' e same in each problem. The launching of surface waves on a di-

electric slab wi.ý`, a relative dielectric cons:ant greater than ufle by means of a

semi-in4 inite parallel plate waveguide -Is analyzed. Solutions for both TE and

TEM excitations are obtained. Nirm.erica: results for the power reflected in

the waveguid, power -rapped in the surface waves, power radiated by the space

wave., and also the yadiation pattern of the space wave are obtained for various

parameters, The power results for the TEM excitation are compared with

those obt'-ned by Angulo and Chang [l9.91 who worked with the formial '.actori-

zation procedure and the differences in 'he results are noted. The final prob-

lem analyzed is the case where ttr- dielectric slab is replaced by an incom-

pressible, is-fropic, plasma slab. T1'is gives the possibility of a relative di-

elpctric constant less t.1an one. Again, numerical results for thb- power reflec-

ted in the wavyguido, power radiated in he space wave, and t&e radiaton pat-

tern of the spac, wave are presented for various parameters. No trapped

waves can occur in th-,s case.

The boundary value probl-ms investigated here are formula'ed by a
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method used b, Jones [1950] as opposed to an integral equation approach. Four-

ier transforms are applied directly to the partial differential equation and the

complex variable equation is obtained without the use of an integral equation.

The integral equation approach would lead to equivalent results as the integral

equation would be of the Wiener-Hopf type; see for example Morse and Fesh-

bach [1953]. Jones' method also has the advantage that the application of the

edge condition, Meixner [1954], which is necessary in this type of problem, may

be clearly applied.

The usual method of calculating the far field is by means of saddle point

integration. However, the problems considered here are such that the far field

pattern may be obtained more directly by using an equivalent Huygen source in

the aperture. The far field pattern is then related to the Fourier transform of

this aperture distribution and in these problems becomes an evaluation of a

function on an interval.
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2. RADIATION FROM A TRUNCATED PARALLEL PLATE WAVEGUIDE

2. 1 Formulation of the Problem

The first problem considered is a parallel plate waveguide with one

plate truncated (semi-infinite) and radiating i:•to free space. The structure is

shown in Fig. 1. The incident field, in the parallel plate waveguide section of

the structure, is taken to be the TEM mode with the magnetic field intensity

parallel to the walls of the structure. The case of a TE incident field is not

discussed in detail as the function to be factored turns out to be the same as in

the TEM case. However, the TE case can be obtained from section 3. 1 by set-

ting the relative dielectric constant (A) to one.

The incident field is therefore the lowest ordcr TM mode.

We wish to find the electromagnetic field. which satisfy Maxwell's equation and

the necessary boundary conditions pertaining to this structure with a source as

given by (2. 1).

Maxwell's equations for a medium with loss and the time convention cho-

sen are

V x + = -• +') V_. w H×_ i• 22

The loss is due to the conductivity ( d' ) of the medium. From (2. 2) it can be

- e time convention
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Fig. 1 Parallel plate waveguide with one plate terminated.



shown that the magnetic field intensity must satisfy

z• - + h- ( 2. 3)

where

+2- (2.4)

with kI > 0 and k2 > 0. Since the incident field is independent of the y-coordi-

nate and the entire structure is uniform with respect to the y-directicnnthe total

field will also be indeiendent of y. Therefore the solution of (2. 3) is equivalent

to solving the two-dimensional wave equation for the scalar potential t"

z +k 4t +o
SX + z - t (2. 5)

All the field quantities are derivable from 0 t by letting

Hv = ýt (2.6)

.x I a ___t (2. 7)

E z I __ (2. 8)

Let

where is the incident field and t is the scattered field. Obviously
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e o6 x ! -6 V (2. 10)

o b6E X V z (2. 10. a)

and * must satisfy.

L(z 2 2
a x 2 1  

(2. 11)

The following boundary conditions on € t and hence on may be ob-

tained by recalling (2. 6; to (2. 9) and the fact that the walls of the structure are

perfect electric conductors:

a) ýto At Ao z) v z...o at x 1o z

C) continuous at x b, z e- 0 ==

) 0 Z e Z t0

where

6x= 6- 6 + whurc ? is arbitrarily small

d) _ continuous at x - bV Z .f b2t -o.

where ý$(=x Z)
-x Ž=
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and 1-ence must be decaying waves since a loss has been in-
'I/-

eluded as rz(-t-z) -'0 for x a 6 and for

F and 101¢ satisfies the edge condition, Meixner [1954], as the

edge of the plate is approached, that is, • goes to zero as
1,'? -I/2

z and vi as z for x= b, z- 0 0,--•O •

Define

(X= +-' (2. 12)

-CL ) %,z) e z(2.13)

_ ez (2. 14)

_ _--_z ) e dz
- ~ ~ Zt'• (xJ 2. 15)

Frori "ht. behav:or ot (wx, z) for any given x as z -- o it can be deduced that

I • ., ana'v',ic !or 7? > Ak. and I(xct) is analytic for 7*4 k,. Hence
+ 2

(XCL) for any gi,-vn x, is analytic in the strip -k 2 7< k,"

-The bcundarv condritions (except e), in view of definitions (2. 12) to

2. 1It ma\" now be wri't(fn in terms of tr-nsforms as



12

a.) i(of$) 0

b. I) oI(b+o,* (b -0 ) Cz 0

d. 1) ++o ,+0_- )=

d. S) Lt--++e =b 0 ;0-V")

and as +r -- +0r 7"'--

(Abelian theorem given in Noble [19581 ).

Multiplying the wave equation (2) 11) by (2L.r) e and integrat-

ing from -co to co with respect to z gives

z

= ("2. 17)

with

= r.- 1 8 )

The branch cuts used in (2. 18) and shown in Fig. 2 have been chosen so

that Yhas a positive real part when -k.< 74 k . Gneral solutions for

CL(x,.) satisfying (_'. i,) .o. a Irm convenient for applying the boundary

conditions are

R(x,) Fc) C~sih +'z)- '•• .S,'nK'/x ) • ..•.x i_2 19)

~(x I ) IR Rx eO Yh + 19

The soAution for )(x, y) is obtained, once the unknown funt;ions A, B, C, and

D are found, by, using the Fourie,- itr.-, rsi., :nt.egra,
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e i2. 21)

The fact that §(XC) is analytic in the strip requires that the path of integra-

tion be in th strip, that is, in (2. 21) -k 2 7< k2,

The boundary condition (e) and the fact that Y has a positive real part

for -k½ < 7,< k2 requires D(C ) to be set to zero. Likewise boundary condition

(a. 1) requires C(c) to be zero. Now at x = b we may write

~(-o+ (-o =Ii s(YO (2. 22)

_Y6

~ (2. 23)

-)=�Y YAS .k(,') (2. 24)

S(b.,) i- • (u±o) * - Y 15 •(2. 25)

Note that the a. in the argument of the functions in the above equations has not

been written for convenience and will not be if it does not lead to confusion.

However, • , A, B, and Y are still functions of a. Boundary conditions

(b. 1) and (d. 1) show that _ and is now defined as (b)

That is,

(2I II(* )= _( - ) - _ (2. 26)
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and also

I(6+o) (6-0) (2. 26. a)

Using these facts in (2. 24) and (2. 25) yields
i -Y6

•(b)= Y STk (vb)= -Y e (2. 2

The two unknown functions A and B are obtained by solving for the unknown

Define

D+h+ o)- 6 ~- o) (2. 28)

which is obviously analytic for 7- > -k 2 . Subtracting (2. 22) and (2. 23) and

using (2. 27), (2. 28), and the boundary condition (c. 1) yields

D + ___ _____ _(2,. 29)
f-T--r (0.- -. 6 (OL+ •(-)L

where

Le s(a-) , ()(2 30)Yb

The function L has branch points at k and -k and (refer to the definition

of y) L is analytic for -k 2 < 7-4 k2 Therefore, L may be factored into the

product L+ L_ which holds in the strip. The functiorn L. is analytic for />- -k2

and Lis analytic for 7< k 2 This factorization is the difficult step in this

class of problems and it is obtained by a limiting procedure as discussed in sec-

tion 2. 3.

Let

"". '..:- - ... '
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(a.) E ¢+FE-(a) = (C--• L • (2.o31l)

with

E(0-) 2 ; analytic for 7< k (2. 32)

f- fl ( c L - 2

SZ) -IJ , analytic for 7-> -k 2  (2. 33)

Multiplying (2. 29) by (L (a.) ). (a. + k) and using (2. 31.1, (2.32), and (2.33)

gives

- ({m t- k L) LCW-E (2. 34.1

which holds in the strip -k 2  7 - < k?. The left side of (?. .4, is analytic for

7- -k and th- right side is analytic for r) - k2. Therefore, one side is

the analytic continuation of the other and they may both be equa'ed +o a function

J ( .) which is analytic over the whole a - plane.

D+ (a-k) '(CL) -+) L - bc - J) L(2-)

The application of the edge condition gives the unknown function J (C-}o The fac-

torization obtained in section 2. 3 shows that L I a. ) behaves as a. I/?/2for

' -+co , 27> -k2 and L (a.) behaves as a 1 1 as a*-•ac; 7- cf k Z The edge
-1

condition (f. 1) shows that D+ behaves as ca as a.--- aco 7- >- -k2 and ý_(b)

-1/2behaves as a. as a-•, r"< k . The definitions of E. and E, given in (2.°32•
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-1
and (2. 33), respectively, show that E behaves as C as a-P, , 7< k 2 and

-1/2
E+ behaves as a. as C.-+oo , 7- > -k . Therefore J(M ), which is analy-

tic in the whole of the (M -plane, behaves as oa. as c.-+ , 7" k2 and

-1
as CC as a -*- ,o , 7- -k 2. Hence from the extended form of Louiville's

theorem, for example Hille [1959], J(c.) mubc be identically zero, that is

6E) 6 D(a) (.--k) L(a-) (2.36)

Use of (2. 32) and (2. 27) gives

A(;()a-)~ (a.) Cosjki('X) 6 /" Lý.) L(a.) Cosf (Yxc)(237
__-_ y SiqI• ('b) (2. 37)

-Yxc 'Y -- YX

-Y 6 L~k LO.a) e Y Y- 6 Y (2. 38)

The formal solution is obtained by inverting (2. 19) and (2. 20) and may be writ-

ten as

q,~z =X a) -- L ox is
( ) Z) 0 -(2.39)

- - ,(2.40)

with -k2 "< k2 in (2.39) and (2.40).
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2. 2 Choice of a Closed-Region Structure

The factorization of L(O.), given by (2. 30), is obtained in section 2. 3

by taking the limit, as a parameter approaches infinity, of the function and fac-

torization which occurs in a related C-R problem. The C-R structure should

yield a function whose factorization is obtainable and the limit of the function,

as the transverse dimension approaches infinity, should be the O-R function

(2. 30).

It should be pointed out that it is not necessary to resort to a C-R

structure to accomplish the factorization. It is certainly possible to intuitive-

ly choose a function which may be factored and be such that some sort of math-

ematical limiting process on the function will yield the O-R function. The

choice of a C-R structure seems to be the easier choice to make and has the

added advantage that all mathematical results must be consistent with the phys-

ical phenomenon.

The chosen C-R structure for this problem is shown in Fig. 3. The

choice of a related C-R structure is not unique. The one chosen here is con-

sidered to be the obvious one, that is, the simplest way to convert the O-R

structure to a C-R structure. The O-R structure is obtained from the C-R

structure by the limit of a, c -0 o0 while maintaining a - c = b.

The solution for the electromagnetic fields inside the C-R structure

is formulated in the same manner as for the O-R structure in section 2. 1. The

only major change is in the boundary condition (e) which must now be
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Fig. 3 Chosen C-R structure corresponding to Fig. 1.
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e) J t=0 ~ ,= L vz= 04½ Kt V=o Vz

or in terms of transforms
I

e. l) ý (, )) = 0

This change will be reflected in the general solution for (x×, L _) in x > b,

that is, (2. 20) will now become

4ýxa)= B (a) Cosk [Yc -x~]t+DuoSink [Y(o.-,x)]; 6:5x•,-_o(2.4l1

Duplicating the arguments used in section 2, 1 will then give the following re-

sults:

C(a)- D((a) C 2.421

CI(x,)L)= 9) Cos k(YX) ? jl ttk__K_ý_C) Cos ) (Yx)

' (2. 44!

Da(x~a.) = (a) Cos ,_ykt.-X} - { z&K4(W) K_() CosbLYa(.-.41

I"Y"• Y Sirh (Yc) (2.44•

K (c) = K+(c) K(_c}-- S; h (Y6) S .1 ?(YC)
' S;r t' (" Y C) (2. 4 5

where K(a.) is a ratio of integral function. Note that K( c.) is actually mer,-

morphic with poles at

.VZ t!/z

1- -(-• -a, , 4 61

and hence is analytic in the strip -k ,K"<k2, IK< -<k is fattored in!o K: a.I

analytic for 7-> -k) and K I C.), analvti, ft r 7-T-4 k in s,-•tion 2. 3. The
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- 1//a
asymptotic behavior for K +(a.) is chosen such that K+ (.).- a, 1 as C,--0

- 1/2

for 7> -k2 and K (c)--•IL . as acz.-c-) for -r< k . With these condi-

tions the formal solution for the C-R structure is given by

UtLZ

T2 _0 + (2. 47)

with -k2 1', k2 in (2.46) and (2.47).

2. 3 Factorization Obtained by a Limiting Procedure on the Function Appro-
priate to the Closed-Region Problem

A formal solution for the EM-fields of the structure shown in Fig. I

is obtained once L and L of (2. 30) are found. This factorization will be ob-+

tained by talking the limit of K(a.), given in (2. 45), and its factorization. Re-

call that we are interested in a factorization using functions whose common re-

gion of analyticity is the strip -k 2 < 7' (ImC.)< k2 and whose product is L(a..)

for values of CL within the strip. This strip of analyticity for L( a ) is also the

strip of analyticity for K(a). Also recall t',at Y as defined in (2. 18) has a

positive real part for C. within the strip. Hence, for any a- of ixterest

(within the strip), the limit, as suggested by the physics of the problem, gives
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%,; .( --..- a: -0' 'IY S ;. I (Y O.)
a'--r- =6 6

or

-Y6
L; K- S&hkC 6) e 6

SiLm S,

L0-) S,,,u ) . - e (2. o.
o-jL cc -6' ,"C

,- Y"= ("2.-i-Fi ' with •>- O for any L.. within the strip, Thus, ,the

1,.nctiw. to : ac, r- d for the O-R problem is the limit, as given by (2. 49, ()f

•' ,Ji(q :i .,n to 6., '--1 'ored for the C-R problem. This fact enables us to ou, a'n

" I'. ,•''r DL.. by *'i- - .mjting procedure.

". -. -. ation of K( ", given in (2. 45), may be realized b,7 using

,.. ,-, '..it -K( , ,- a ratio of integra.1 functions. Hence, K(CL) may be tx-

,,. B . . _nf.nite products from which KI (CL) and K (CL.) may be con

•,BA .T'. '- i. Ih results ar-

(•ST + L e 0I+T l -- -

+ Sin . _

t<_o}= ~K•-. ,2. ,,.

W(;I +•'
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(2. 54)

The exponential factors are inserted in the infinite products in order to make

them converge uniformly. The function X (a) is chosen to be analytic and to

-1//2

make K+ (L) behave as L-/ as a--* for 7- > -k2 as required in order to

be able to solve the Wiener-Hopf equation for the C-R problem. Tb.e function

)( (m.) is obtained from a knowledge of the asymptotic form of K +(a.). The

asymptotic form of the infinite products is obtained by comparing them with

the infinite product

7rK-- 0- r +

04 __+ t____2. 54. 1

where l (a-) is tle Gamma function and F is Euler's constant. The asymp-

totic form of (2. 54. a) is obtained by the use of Sterling's formula. Since each

infinite product in equation (2. 52) behaves in the manner of

LZ -+ 0 W Q(' 2. 54. h)
6

for large n, their asymptotic form may be obtained from (Z. 54. a) to yield

The function • (c.) results in K ( CL) behaving algebraically for the
+ I

solution of the C-R oroblem. However, when merely usin:g KtC.l to obtain the



*14

O-R factorization it is not necessary to include this term. Its inclusion does

lead to the possibility of obtaining the O-R solution from the C-R solution as

Will be discussed in section 2. 5.

K,(-) and hence K (ca), without in-luding the X ( C) term, may be

expressed in an alternate form. This will prove to be advantageous when lirn-

i's are to bi taken. in particular, on( can write

V/2. CK. S -Si -T.T, .. (,I + e LtIT O e (2. 5.5,

with

H1(a)=L; LFc.A? )
N -. (. 5I

where:

F_ __ _ (2. j>

and

a) F ()has simple zeros at .i[ f)- Z

b) F (-). has simple zeros at r r-1 3'2,.•

1 2aC ) F C :): .i Fzz-)

d) • in the contour shown in Fig. 4 with o < r 4 Tn/4 r< E < kZ~ 1



/-BRANCH CUT FOR
Im(w) - w. k5

w -PLANE

-/( N. [Nb/c]) w/o

-,-ýrio n wc N /d' Re U)

k d

Fig. 4 Contour used in the representation of F u ) given by ('. 55).t
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The functions- FI (w) and F (w), may be identified with the functions

which, when set to zero, result in the characteristic equations which give the

transverse wave members for the regions b • x 5 a, z >o and o < x t a,

z < o. respectively, in the C-R structure, Fig. 3. In this particular prob.-

l em

FI(w) Sin (Wc) (2. 59)

F (w) Sin (wa) (2. 60)

Tbat K (0L), given by (2. 55), is the same as K (aL), given by (2. 51)
+

may be verified by integrating (2. 56). For any CL with 7-> -k 2 the integrand

in (2. 56', is analvIvic with respect to w in -k2 Im w < k except for the simple
2 2

poles at the zeros of F (w and F (w). In this case F 1 (w) and F2 (w) do not

have anv poles witl-tin . Using the calculus of residues one obtains equal-

i*v between (2. 51, and (2. 55).

The expression for H ( a) may be expanded further by integrating

along the path of integration. That is

d+ie ~i 0-'

die dEic (2. 61)

Now

:z_ý:ýb rieans the largest integer in Nb
c
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oii o -'-S - (2. 62)

because the integrand is an odd function of w.

Also

(.63)

and

a-eN 2z. 64)
-z

because the integrand behaves as w for large w.

Therefore

H z'7r = gi6 .Z)+ (2. 65)
1

whcre E is any positive number such that 0 -- < k., that is, H (a) is inde-

pendent of C . A useful representation for K(a.) is now available and may be

written as

K(jt)= S&4_Y e
Y ,' (2.66)

with H (a,) given by (2. 65).

A representation for L(CL) for any a. within the strip, -k 2 2e 7-. kz

ana from which L+ and L may be chosen, is obtained by taking the limit of
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iZ. 66) as a, c-* 0 while maintaining a-c::b. The limit of the left side of

(2. 66) for values of a. within the strip is given by (2.49), that is, bL(ami

Now

i~k6
Lim Sr ¢ vi- e) t. 67,

O)-0-CO

and ict

H() = LIM H (.,)
,. 0. 6 8 .

The function f! aL. w,' is independent of a, c and the function g( Cj ) for

this problem, is

EC (g :F PEi1 _n [aCs~.(~i) ~ ~

Hence

o0 Pr- --c ( 2. 70

Define

'..L I(~ E -- -- o Eli, --. o (2. 70. a•

L 6o.0-c= L--C =b

then

00

- == ( (2, 71)
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where

It is interesting to obscrve t~hý phy11sical s~gnificanc,- of 02. -0. a'.,

G 1(Lo) given by (2. 70. aý is equal to the d~iFferenc,- of 1 and ,. and zýN

are the inverses of thep spacing of thýe zeýros of F (L; and F (L lýsI-,Sx

pected if one had work-d witf. tbe ;nn.f;.ve pirodiuct ýorrn- o' K(M', Tbe riatliýral

logarithm of K" COJ would con,!ext. piroducl~s o-ver ni fo Sims o.' logarid1.m;5 Oo'r n.

One could ther, change tle. sumrnmat~on. to a sumn o4,cr nira an-il nr/?;c, t'hat is, .he

zeros of F lcj' and F 'w.ý As a an-3 c ;ippiroach- :-ntiinitv, w, a~ nd w - 1 r

would approacht continuous xrariab~s arn.diW AL1so SO n nraan

in/c would approacht & and dw . .n tf~e 1i-n~ one w~ould ob+ta-n

CPO

but

- A -ir ?.73,1

Comparing (2. 721 with (21. 71! *'ust1!ieL th, ;-.-rpretat.on of G (W%

This m~ethod could havt- hp'n lused but it is not as con%-nient or as suf-

ficiently general as !he repres-nta~ion gv,--n by f"qualtioI '2. EK' -wb'n anailyeing,

more difficult problcms as in sections I and 4, However it do'os pro-,ide a

check on the limit of g(ý j9- 1ý Tl-e if'-renc~flC of the in, "rsc. of '-ý spa.-cnv of

the zeros of F (w) and F ()A can he calculated for increasin4! -alues of a, i ,
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a-c-b, and the result should approach the expression obtained for G (w),

(Z. 70. a). The check in this case is trivial as the zeros of F (w) and F2 (w are

obvious.

The limit of (2. 66) and the results given in (2. 49), (2. 67), and (2. 71)

show that L(OL) is

L_(a.)_Y 6 C! (2. 74)

with H((.) given by (2, 71). The choice of L+ (L) may now be made as

V2 .a. 7(.7 + H)-)

and

L(00 =LQ-cr) (2. 76
t-

The range of analvticity of L (•.) can be deduced from the regions of analytici-

ty of the infinite product and H(aIO. The imaginary part of 3n, (2. 51), is great-

er than k and hence the infinite product in '2. 75) is analytic for 7" > -k
2 Z

The function f( a. , wi, (2. 17), satisfies the conditions of theorem. A, page 11,

Noble [19581 and also restated in the AppendiA. Hence H(a) is analytic for

•-k2 Therefore., L, (aI is analytic for -r> -k 2 and L_(CL) is analytic

for :"< k 2 9 the desired range of analytcity. The product of L, (cLj and

L (C.) is obviously L(C.).

The functions L,(a) and L (ct) can be arranged in a slightly differ-,ni

form which is prefPrable for numerical calculations.
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0I~ + ~ 2.

!.r r et i o n -a iton 2. .7>- w i I n o tb- '2q'4 but )'s 'or-nv,] bcl u~s-d in 5Se(

i000

Considet"9i11O'0 ,(3

The(- b-arct o; In. (k Lj :s c-os'-n !o be in !1,e Iov.-r nal' ph and t -

!-ranc. I -I. ik & w., cl-9,en to '- 1-n ýhr' ppzr bal! plane. 11nc for any CL

F11ci~rh' QtC w. is an an i'v~Ic function o( w for -1-e Im (

V ~ 1 rra~9of Q W, %vj'i~ respr-'t. to for any w -n hb-s ranv-' *s

LQ(LC
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Therefore, the integral (2. 77. a) becomes

o jC iY 1 (2. 77. c,

and hence

H (a.) CL + ay (Z. 78)

and

witb L (a.' = L +(-) and )C(- a.) = -X(cL). The principal determination of

t1he logarithm is used, that is, In (1) = 0. The unknown factor, exp. [-X (4]1

which must be analytic in 7> -k., is added so that the asymptotic form of

L +(I) is algebraic. The algebraic behavior of L (C.), and hence L (a.), en-

sures algebraic behavior of J(Mi) and hence its determination in equation (?. 3,

by the extended form of Liouville's theorem.

For large CL in 7"> -k?, we have

ir ,a ' ) (1. 801

The asymptotic form of the infinite product may be found by the use of equa-

tion (2. 54. a) and gives

Sa6 *r 6 a.6ý b

(2. 8 1
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where r is Euler's constant. Therefore if )( (•¶ is chosen as

L ~TfJ (?82~

then

-1 /2
with L '.ftLa tr as t•-. for 7" > -k. The function L (0L.. L '-€I,

- 1/2
with L 'CL. ^0 CL as c..ooo for 7 > -<. k2 .

2. 4 Sol,.,ion of 'Ie Problem

T1'e factorization given by equation (2. 83) and the transformed field

quanti t :es g-en by equations (2. 37), (2. 38 , (2. 39), and t2. 40' permit the de-

lerm'nation of the 'ield quantities of interest. The scattered fields within tbe

waveguide are gwven by

-)3 L.-" L. ) 5:,,6(xY6) " > 0
7r 

(2. 84)

with -k) ry-< k,. Since z > 0 and the integrand has no branch cuts in the

- . .... - -- -
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lower half plane, the path of integration may be closed in the lower half plane.

The solution for ý is then obtained by using the calculus of residues, for ex-

ample, the reflection coefficient, R, in the waveguide is given by the residue

at CL = -k.

R 2 (k) -L2 (k) (2.85)
+ + o

Higher order reflected modes are available by the same procedure. Note

that once a result as given in equation (2. 85), or those following in this section,

are reached k may be taken as real and equal to k . This may be done because
0

k is infitesimally small compared to k and the evaluation of a function at k

is equivalent to its evaluation at k, k

The fields for x •_ b and hence the radiated field is given by equation

(2. 40) with B1 ( x) a. ) given by equation (2. 38). The function Bl(x, M) has a

branch cut in both half planes and he ,ce litle is gained by closing the contour

by an infinite semicircle. The radiated fields, asymptotic behavior of 0 given

by equation (2. 40), is usually obtained by an integration procedure known as

the saddle-point method, for example, Morse and Feshback [1953]. However,

in this class of problems the use of equivalence theorems for fields, for ex-

ample, Deschamps [1962], will prove to be more direct and convenient. The

field in the aperture is given by

0(b+'X)W1 ý B,( 6)a.)e JCL z
Or (2.86)

Recall that H (b + o, z) = (b 4 o, z) (b + o, z). Therefore, H in
y 't y



the aperture is given by equation (2. 86). The equivalent electric surface cur-

rent in the aperture is given byA A
IT=rlY 7''HJI W. Z (6+0,z\) 6(x-6,) (2. 87,

The actual far field is equal to the far field due to the equivalent electric cur-

rent 23. The vector potential due to the currert ZJ is obtained by knowing

the asymptotic form of the Hankel function H0 (2 ) (kor) as described in Har-

rington [1961] and gives

lz- 0 6;s• • -z (2. 88

where:

k, Cos()z+x= -Z A12. 90:)A A

_F z- X,'-€ 7-)t" 2 1

Lntt.grating (2. 88) with respect to x gives

*• t k- 6 S; (6) ,c-.a

S2 7r"

and hence

: 6(xI is tie delta function.
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-A e___BI__ (6y.-60CosOe)
1.Q3)

From Maxwell'- --q'ivions w- ob'a~r

o r

1?. q4

In this problem PH in the far f.'eld is

with 0o<e9<

The real power r'4lected i. *he wav,'gu.-dt' and the real powe~r radiate~d

in the :,pact, wavP art- cb~ainable once- 'he number olf rnodt.s propavati.nv in the

waVeguide are known. if tl- glj.do~ dxm.-ns ion and freq'iencv ol Dpe -a t ion a i

chosen so t)haf only ý-e TE,,v- mode c;-ýn propaga~to tb-e rt.sults are:

Normalized lRe,'lpc'.ri Po-w.-r I Lt~ 2

The r~e-rmalizzod powv-r radi-tt 1 :s g'en byv~ Povn~inlz kclor.

Norraalized RdaUPw' .)h 0 ~

sin e thv incici n- pot.. r is k b Nc--
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6O

W B '( - .C s )a (2. 981?

In this problem (2. 98) becomes

z6 I L8e~S L~CaG\dir I "os- (z. 9))

The radiation pattern as a function of 8 ic giver, by

tI HSI w I 13(b4,-kCos 3) - SoL 1"',.)

nu in this problem is proportional to

I HSI" L L Pe, Cos 8)A,' •

The numerical value for W , W and the far fi, oaLterris are
ref. r rai..

given in section 4. Some of the equations in this section have been :btained,

With sufficient genexality so that they will ap.piy in the analyai. of the problems

in iection 3.

In this section i-. (a) and hence L (Cl.) were available in ciosed form.

i-iov':•rr, this is not always ftavible as the integration isually cannot be carried

L..t ..ce '(Lý is obtained in clcosed form, for cxample (Z. 83). the 'oss may

be :,'u,,Ced to zero. Setting (•I to zero results in kZ = 0, kI = k ? *"

I * :.t ,r v, wl:ten , = o, k = io in (Z. 83). The path of the F-urier inver-
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sion integral used in (Z. 30/, a;d (Z. ,0! w,-n : is greater than zero is shown

in Fig. 2. This pat._-,is t -e L-denter d when t4;1e loss approaches zero, that is,

when k tbe co-.tor is s!-.ow'n in .Fg, 5.
0

The equation for L, (. c. ',nist ý-e interpreted .n a sý.-ni-ar manner as

the Fo-3rier invecsicn integral w'r.en tl-.e loss is reduced to zero. For example,

H(.) used in (2. 75) and defined by iZ. 71 .. eccrnes. when k-- k

- - (Z. 10Z)

with the contour giben by F g. 6. Mo'' -1 er, 11", jse. is made of the inte-

gral form of I-4( m) giv.:r by (7?. "1 and 12. 1.02) as t.e closed form is available.

In the more difficult problemrs, di.scusse,-d in tr.' following sections, the integral

form is used and tthe conwours of i ntegration -nust be interpreted as discussed

here.

2. 5 Comm.ents on the M.•t3od

The factorization obrta-nt n iF. -. ':?on 3 Tr , cali be verified by

reference to the prohl-:m of thtwe pa ral,-i prl;;... .,bcf. r.isc;ssed hy Noble [1958].

The function to b? fah.cren s *sarn .'.. *.cprobne.-:n, A comparison of the

factorization for L, gi-er. 'v . 8• wS suiton, shows

that they are the .:aroe. He o' t-..r -.d Y '-,oriza.;o , not on LUa-) directly but

on a function reiated to L( - i-i b- j;-s2 -- ' a !o., m -,-.ori:zat;on procedure.

The Iorm r i L! 3.'Lainod i,; n:Yan: o0 a Iirn procedure on K,
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r

BRANCH CUT FOR
a- PLANE y= 'a2 .k2

INVERSION CONTOUR,

- k.

Fig. 5 Branch cuts for Y and the Fourier inversion contour when

k --- k
0
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Im(w)

BRANCH CUT FOR

w- PLANE [ _ _"k_

Re(w)

Fig. 6 Contour used in the integral representation ,)f H( a),
(2. 102), when k-o-- k

O0

1L
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(2. b6), proved advantageous because of the generality of HI(d.. given by equa-

tion (2. 56). In the problems discussed in section 3 it wMll be seen that g(W)

changes for the various problems and not f(a., w). As already mentioned, a

check on the limit of g(f ± i e ) is available because it is equal to the differ-

ence of the inverse of the spacing of the zeros of the characte.. >tic equations

F l(w) and F 2 (c(). The form of H (a.), equation (2. 56), also applies to certain

other geometries involving coupled waveguides. It is found that in these cases

the form of (2. 56) remains unchanged. One needs only to substitute the char-

acteristic expressions for FI(w) and F 2 (w) appropriate for the particular geom-

etry under consideration. For example, this method of solution should be applica-

ble for analyzing radiation from a semi-infinite circular waveguvAe. The above

discussion brings out a strong similarity between cylindrical and parallel plate

waveguide problems that may not be apparent without a close look at these prob-

lems.

The form of L given by equation (2. 77) will also prove convenient

when numerical calculations are attempted in section 4.

The C-R problem has been used primarily to generate the O-R factor-

ization. However, the relationship between these two problems may even be

made more general. If the asymptotic form of K (.L), namely X(CL), is included+

in (2. 55) and hence in the limiting process, we obtain

1-I-. o

Lim -c i

-~0 1 0 3- . .. )- 7- . . - -
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This follows from the fact that the limit of the asymptotic form of K+ (.) be-

comr - the asymptotic form of L +(ci.). That is, for K+(L), the C (CL) is

given by (2. 54. c), namely

F -- 6 S-o I- r (2. 104)

The series involving the terms a. and nt may be expressed as

M F: (W)

V 9 (2. 105)

where F and F2 are given bý equation (2. 59) and (2. 60), respectively. The

contour 1 2 is the same as the contour I shown in Fig. 4, except that now

dX < d - (M+I)-.MI Likewise 2 is given by Fig. 4 with d

S<M•• ¼A "t " , Integrating along the contours gives (E is set equal to r)
C

- _______- - H-
0-- - r(2. 106

E +T-- L. (2 106)_
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Now a and c---* oo but so does M such that M/a -- • and M/c -- • . Hence

we may write as a and c become large

c •r/. __C/

Ir Wz-FkI- LýD(.2, 1071)

Hence

lvv7-_,? -CL =IT-• ,•- (2. 1081

Therefore, (2. 104) becomes as a, c -L

0,.) C. ---I CO o

(2, 109,

which is >Y (ý-) for the O-R structure as can be seen by comparing '7. 109)

with (2. 82).

The fields for 0 < x -, b involves the Fourier inversion of AlI i x M

given by equation 12. 37) for the O-R structure, and of CI (x a- !. given by equa-

tion (2.43) for the C-R structure. For any cL within the strip and any 0< x < b

the limit as a, c-..c< , while a-c:b, of C I(x, aL ) is A x, -_ ) provid-vd (2, 103!

is true. That is, K+ (<L includes the term )- ( L) which makes it algebraic

in the proper half-plane. Hence the fields in 0 < x < b for th. C -P structure-
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approach, in the limit, the actual fields of the O-R structure.

This establishes, for example, that the reflection coefficient for this

chosen C-R structure converges to the value of the reflection coefficient for

the O-R structure. Indeed, this is what Mittra and VanBlaricum [19651 re-

ported.

Likewise, the limit of D (x, a- ), given in (2. 44), for b < x< a and

a- within the strip is equal to B (X, '(-.), given in (2. 38). Therefore, the

fields for b<_x <a in the chosen (2-R structure approach, in the limit, the

fields for the O-R sructure for b < x (a goes to infinity on the limit). This

establishes that tf.e O-R solution 's a limnit point of the C-R solution in all

space. ThereforepO-R field quantities may be obtained from the correspond-

ing C-R field qantities by' a limiting process as suggested by Talanov [19591

and Mittra et.al[19661.
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3 EXCITATION OF A DIELECTRIC SLAB BY MEANS

OF A TRUNCATED PARALLEL PLATE WAVEGUIDE

3. 1 TE Exc~tation of a Surface Wave Str':cture

The excitation of a d.electric slab by means o( a parallel plate ,vare-

guide with. one plate truncated is analyzed in ti.is section. Q,- surface wa-

structure is shown in Fig. 7. The relative dielectric const.nt ol the slab tic

is assumed to be greater than one and hence the pos-iblliv of the sr-,-ctre

supporting surface wav-s. The Lncident fi-ld in thc wav-gude sction is taken

to be the lowest order TE mode with the electric field intc-ns..-v parallel to "-¶b

walls of the guide. A slight loss due to finite conductivit~cs 0V j s as-

sumed in each region. However, when the fmial solution _s obtaired '.s l(s,

is permitted to approach zero.

rhe TE polarization is described in detail in sections 3. 1. 1 to 3. 1 4

as opposed to the TEM excitation. The details of the formulat:on of t:he prob-

lem for the TEM. excitation !ollow closely those in section 2 and only the perti-

nent differences and rcsults are gv.en :,er sectiun 3.2.

3. 1. 1 Fo.,nulat'on of the Problem

Tt-e tctal el ctromagnetic fields ar, ob!ained bv selv-m t.e .calar

wave equa'ions for the scattered scalar poten:ial • . Define

= + (1'
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PERFECT CONDUCTORS

Y

Fig. 7 Surface wave structure excited by means of a parallel
plate waveguide.
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(3. 2)

K- J OE . (A)\ ( 3 .4 ,

with k 3> 0, k4 > 0. Note that the parameters are chosen so that (2-, /b) >

Sb)2 .
Rekd" > (i/2 This ensures that the lowest order mode propagatts in th.v

waveguide and that the dielectric sl,', is excited. The scattered scalar pottur.-

tial is given by the solution of

± ~i " -' }

The constant k is given by equation (2. 4). The elek troniacnetit fields arc ,b-

tained from

Li4

,JJ

h -t
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" "i? (3. q.

Defining Fourier transforms of 4 by equations (2. 12) to (2. 16) re-

duces the problen to the solution of

(x,&.) - y (x)I.)- C) (3.1C.

Y( CO / 3. 1)

where:
S ]',3. 12_:

and Y is given by equation (2. 18). The asymptotic behavior of (x., z, re-

sults in •.(x, oý ) being analyti. for -j>-Min(k2 , k 4 ) and c-- ,1

being analytic for 7- < Min(k, k4'.
2,4'

Reference to Fig. 7, equations (3. 7) to (3.9, and equations (2. 1., to

(2. 16) gives as the boundary conditions on < (x, o,)

a) C

4-h-

d) 0) ,.1 + ' - r. (•; -o cL) t ,

Min Minimum value of

t. m' :"% .
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e) (6, a.)-*--- aL s ar-~ fj r 'r<MV(k,9~2

'; ,.., + 1/2
Boundary condition (e) reflects the fact that E and C z at x b,

y y

z-- -0.

A solution of (3. 10) and (3. 11) in a form suitable for the application

of the boundary conditions is

•(x)cL) = .•) S~rh(M:) "- C(a•-) Co (s X)) 0 x . 0 3. 13)

(:}..eE3¢ (a-C) e + D (.", e 4.
(3. 14)

Recalling that y has a positive real part for any a. for -k < k and the
2

fact that we are seeking decaying waves at infinity requires that D(a) be zero.

Also boundary conditio~n (a) requires C(cL) to be zero. We may now write at

x = b, using boundary conditions (b) and (c),
-Y6

11(6) (a) e (3. 15)

I I
(6-'± (,s-)) fica.)Y Ca'sJ7 (y, (3. 16)

+_6to) + B()- ) Y (3. 17)

A solution for i(b) will yield %(cLL} and B((.) and hence a soltition for

I(x. a.) and a formal solution for ( (x, z).

Define . "
¶3CS~ID
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I -q-I

D ( o)(3. 18.1

and therefore D+ is analytic in 7"->-Min(k2, k 4) and behaves as a-112s+ 24

c,--,'oo in 7-" > -Minlk 2 , k ). Subtracting equations (3. 16) and (3. 17), using

the boundary condition (d), and the results in (3. 15) gives

-t J_ b -Ž _ _ _ _

_K, (3. 19)

where:

S- KY YJ Cos k(YI6) (3. 20)

The function L( 3L'; has branch points at k and -k, the branch points of

"Y . Choosing the branch cuts for Y as was done in section 2, 12. 18,, and

shown in Fig. 2, results in L(CLj again being analytic in -k2< 24-' k This

function must be factored into a product L, L . The function L is analytic

in 7->-k 2 and L_ is analytic in Z-< k 2 . Again, this factorizatiorn s the diffi-

cult step. ThVe factorization is obtained in section 3 . 1. 3 by a limiting proce-

dure. The metlod is similar to the one used in section 2. 3 and gives the fac-

torization in a form convenient for numerical work. Multiplying (3. 19) by

L 4(c) and rearranging yields

I F4 ý,Dt
S(3. 21.)

'Where:



- (3.223)

6 . ( L-ý •d,)+ (3.24)

Obviously E a() is analytic for r"< -k4 and E +(cL) is analytic for 7>

-Min(k 2 , k4 ). Therefore equation (3. 21) holds for -Min(k 2 , k4 ) <•,7-4

Min(k 2 , k4). The left side of (3. 21) is analytic for 7-> -Min(k2) k 4) and the

right side is analytic for 77< Mih(k 2 , k4 ). Therefore, one side is the analy-

tic continuation of the other and both sides of (3. 21) may be set equal to J(CL),

which is analytic in the whole a. -plane.

In section 5. 1. 3 we will find that L and L behave as CIL in+
-l

7->-k and 7-< k 2 , respectively. Therefore, E (L) behaves as CL- for

-l
7"< k4 and E+ (cl.) behaves as L. for 72> -Min(k 2 , k4 ). Using these re-

-1
sults in 3. 21 shows that J(a) behaves as cL for 7-> -Min(k 2, k 4) and

also for -;< Min(k 2, k 4). The extended form of Liouville's theorem proves

that J(a) is zero. Hence, we obtain

L ,S(X. a.)= (3. 25)

L S~r~(y,6)
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_y•: y6 -YX

8,%•)-_ e (3.26)

b (aL-#,)
and the formal solution as

e 'I t a-7 j ae0 (3.27)

-J . a.Z.

- +• -r

with -Min(k 2 , k )4-<7< Min(k , k 4) in (3. 27) and (3. 28).

3. 1. 2 Choice of a Closed-Region Structure

The chosen C-R structure is shown in Fig. 8. The formulation of

this problem is identical to that of the O-R problem in section 3. 1. 1 except

for one important change. The boundary condition which required decaying

waves at infinity now becomes

f) (a, a. )= 0

This results in the following equation, corresponding to (3. 14), as a solution

of the wave equation (3. 11).

Following t(a) Smeth[d Cy (souto. as ox] D sction 6!5. X (3.g29)

Following the method of solution as outlined in section 3. 1. 1 gives
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F PERFECT CONDUCTORS

go 8s, c s' s u c

.o.k,6 0, 1/V/,,

Fig. 8 Chosen closed-region structure corresponding to Fig. 7.
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(3. 30)

cf,~~~~ ~ ~ (_, o - c 5
I (~x~(3. 32)

Z) (X~c)C]. Jcc ' ~ x~ (3.33)

witL" -Min(k 2 , k) 4." Min(k 2 , k4 ) in (3. 32) and (3. 33). The function K+ ( OL)
- 1/2

is analytic for 7-> -Min(k 2 , k4) and behaves as <. with cL--oo for ,7">
4

-Min(k , k ). K_(C.) is analytic for 7<". Min(k , k4) and behaves as a..
24 24

with C-o00 for 7< Min(k 2 , k 4 ). The product K+ (C) K ((3.) is equal to K(CL)

in the strip.

Y Sir, k((,6) Cosk(Yc) +-Yj (_oA N6b)5ý (Y'¢) (3.34)

The function K(<X) is a ratio of integral functions. It is actually meromorphic

with poles at

Y1 7+ ±)(3. 35)

with 1 being the zeros of the characteristic equation (transverse ,.ive num-

n
bers of the waveguide) for the inhomogeneously filled waveguide.
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C0SC() S" ii Cos(-'e ) (3.36)

where:

Z ( Z k 2 - ) I/Z 3.7

Note that the zeros approach (mr/a) as 1-=•

The functions K+ (CL) and K_ (C) are now readily obtained by using the

infinite product expansions of the integral functions.

a ~ a

ci.\ (3 .)

where:

k S;h (ka)Csk)F•dC.s•)•i~ (3. 39)

2 2 I/2
Po= K' -(l)] = L (gJ- ,rI (3. 40)

/"7r= (3. 40. a)

00 (3.41)

The •(a) given by (3.41) ensures that K+ () behaves as aL as (=--O 00

for 7> -Min(k 2 , k4 ). It is obtained from a knowledge of the asymptotic form



of the infinite products in (3. 38) by means of equation (2. 54. a). The func':-un

K (C) Is equal to K (-CL). This function, K( C.,, and its factorization will yield

the factoriza*ion of L(CaL,, equation (. 20), via 1,m-t in a form convenient for

numerical calculations.

3. 1, 3 Factorization for the Open-Structure

The factorization of L,'a', equation (3. 20), will be done by a lim.tinp'

procedure analogous to the method discussed in section 2, 3. The only differ-

ence here is that L( C.I is more dZficult ',compare (3. 201 with t.?. 30 1 and a

closed form 'Fur "he answer is not obtainable. However, +he 'orm of the Iac

forization obtained readily Pends itself to numerical process~ng and hence nu

merical results +or 'he electromagn' -c ield quant:*:es of interes'.

The relationship between *he O-R s~ruc'ure and thp C-P stru,, +r,- :s

seen #v comparing Fig. 71 "K e. 2 R structure .s obtained by 1'-- ng a,

c -woo wh:le maintaining a c b. Using fhis im:-. on K(Ca', equa'ion 1 . 34

for any a- such *ha+ -k 2 <'7-4k2, gives

Lim Ka) Li L -!5ý ,(y ()Y, L -5101Y'1 7

Y SI h 6) -+ , C-- ýLYo6

This results from the fact that for any C. wilh:n the s'rip " has a positie

non zero real part. Therefor-
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L ; Y (3.43)

The function K(Cj) can be expressed in a convenient (for taking limits)

form by first expressing K+ (.) and K (M.) in a form like Lhe one used in sec-

tion 2. 3. In particular, we have

1.b

1with H (ec.) defined by (2. 56), (2. 57), and (2. 58). Again X•(a..) is not included

ha (3. 44). In this case the functions F1 () and F (4 are the characto ristic

equations of the structure shown in Fig. 8, namely,

Fl(w) ( - Sin (wc) (3 45)

FC(W) 61 Cos $(ec.) 5h(w,6) + o, Cos(.b') ';D.(oc.) (3.46)

with
2 .2.

/ (3.46. a)

The contour used in (2, 56) must enclose the proper zeros of equa-

tions (3. 45) and (3. 46), that is, half the total number as the zeros occur in

pairs + w . Equation (3. 46) now has ;he possibility of zeros that give rise to

surface waves and again zeros whose spacing approaches a continuum as a, c,

appruach infinity. Ihis is clearly demonstrated by considering the zeros of

(3. 46) when the loss a and 0'2 are reduced to zero. Under this condition

there are two possibilities, real roots and imaginary roots. The imaginary

roots will exist if ,t is greater than one, which is the case being considered
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here. The possibility of K less than one is discussed in section 3. 3.

The real zeros of equation (3. 46) approach +nn'/a for large, real, w

and also the spacing between the zeros becomes infinitesimally small as a

approaches infinity. For imaginary roots let w = i p (p a real number) and

equation (3. 46) becomes

with ý.~ ((-~~Lf~/,& ) & Euation (3.47) can be shown only to have

zeros for 0 < pI -< 'i.fqT1k . The number of zeros is discrete and there
0

may actually be none. How many real zeros equation (3. 47) ma)' have is de-

termined by the parameters b, K , k . When c approaches infinity and p is
0

positive (3.47) reduces to

S'5..n ý + Co~(3.48)

which is the characteristic equation for determining the surface roots of a di-

electric slab backed by a perfect conductor with a TE-polarization. (See

Collin [1960], p. 474). Therefore, the imaginary roots of (3. 46) which are in

the upper half of the u-plane go into the surface wave roots and the positive

real roots go into the continuous eigenvalue spectrum as a and c approach in-

finit£ for the open structure shown in Fig. 7. .ct, tnat equation (3. 46) is

slightly different from equation (3. 36). However, they have the same zeros

because 1 = 0 or I1 = 0 are not roots of (3. 3t). A zero at 1 = 0 is present

only when the parameters b, K , k are such that the transition point of a
0

new surface wave occurs. We will pick the parameters such that the transi-



tion point is not obtained. When the loss e I ar, d C d 2 are reinser..i th-,t,r

will become slightly compl,!x. The previous real roots will now contairi a

&mall imaginary compunent and tht imaginary roots will contain a small real

component.

The contour used in (3. 44) is th'i one shown in Fig. 4 with the addition

of _ontours to pick up the surface wave roots in the upper half-plane, if any.

The zeros (nTr/a) are now replaced by the - n , the zeros of (3.46). The radiusn

r, in Fig. 4, mustnow be 0 <r<Ee(... ), Im(. 0 )<E k2, where is theo o 2'

smallest root of equation (3. 46) belonging to the set which goes into a c,)ntin-

uous spectrum as a and c approach infinity.

that K +(a) given by (3.44) is the same as (3. 38) can be verified by

using the calculus of residues. The only singularities within the contour are

the zeros of F (w) and F(•-). F (.) and F, (•) do not have any poles within
11

The contour integral for H (C 4 c.:n now b e wrijtcui aL:ng t'ý:, h ~h

and gives for the surface waves

V ? ,. \i• 41)

where p is a zero of (3. 47) r,N .I is the number of ;:eros. -'hv nte-rs

n

ai(,ng the otlhr p.tths give hv- Gamn- res"t- as m t't n V. t. Iht- h .. ,,:-c,

K cT"-,.
_ .. ,-
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1

with H (a) given by (2. 05). The function K_(a-) K+(- + ). Hence,

aH (CL)

I-- £

. F (I- T.e•• •

Taking the limit of (3. 51' and using (3. 42>, (3. 39) vields

K K(a-) =Le) M. 1 t,+ (6.

. Wr, -i k •h e6 ,+k .6 6)
6e

where pn i•s now a surface wave root (positive rooll of (¾ 48) • M the num-

ber of roots1 and

]a

WL+ -ýLjj 1 -7 3. 52

with J• (a-) given by ( a, 6 LC

Define ( • > 0)
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S=L°' 9(""E =" L; F(-E L Ji

+ ±G(Ti-E. - 9iE 0-Lr -O ,m F E

~-iE

WWo OS (W,6) + 5- (3. 56)

W 1 (3 54watn do ( W-, 6 ). -n C os f t e t r s ( W I t o6 )n G a e o s d r

ed the perturbation, due to •: varying from 1. The equatioi (3. 52) arid

•,6) give L(aL) in a suitable form for obtaining L+6)]) and L_(d.).

'Hhe hoice or L+(-) may be d'ade as

ed thep rtr•u to X v r igf m 1 Th ..... t.'•• - (3. 5 ., -- ..
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-I

and

L (a-) = L +(-() (3. 58)

The function L+ (c) is analytic for -7" > -Min(k., k 4). This results from the

fact that P , equation (2. 40), has a posi'ive imaginary part grealer than k4,

and therefore the infinite product is analytic for 7 > -k . The function H(I),

equation (3. 56), is analytic for 7->-k 2 as f(c(, w) and G1 (•) and G2 (w) satisfy

the conditions of theorem A, page 11, Noble [1958] and restated in the Appen-

dix.

The solution of the Wiene:--Hcpf type eqiation, (.J. 21), requires that

L +() and hence L (et) have algebraic behavior for large CL . Therefore,

the term e must be includieci ir. (j. 57) co ensure this behavior. The

asymptotic form of (3. 57) will dictate the choice of • (cC.).

The infinite product behaves as

"" ". e (3. 59)
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for 7->-Min(k 2, k 4). The finite product behaves as

M
CL

+ 77 CI (3.60)

Also

which is obtained from the work in section 2. 3.

This leaves the term

4 . (3.62)

Consider it in two parts by referring to the definition of f(c., w) given by (2. 57).

One term is

±iE

=+2 c-(3.63)

which behaves as ( i) . (constant). These integrals converge because G (I)

and G (c) go to zero for large w on the contours indicated in (3. 63). The re-

maining terms of (3. 62) are

...- . .- , .. (3.64)

*~~~C'W Jc +-------- s."- .- (---
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Changing the variable in the second integral of (3. 64) to -w and using the def-

initions of G1 (c) and G2 (w) given by equations (3. 54) and (3. 55), respectively,

gives for I (1. )

+ x W (3. 65)

The path of integration may be closed in the lower half plane since GI (W) goes

to zero on the infinite semicircle. The integrand of (3. 65), however, may

have poles at w = i p where p is the surface wave pole at equation (3. 48), and

also the branch of is in the lower half plane. Therefore,

""I- ( j 4ji 1) (3. 66)

The branch line integral of (3. 66) is equal to

(3. 67)

as •z-*coo Therefore

TC -(3.68)

for 7-> -Min(k 2 , k 4). Combining these results gives
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-"2 EK/{b L-_(3.69)

Hence, the choice of M (a=) as

V r)-, Ik +7, 1 (3.70)

will result in L+ (a.) remaining analytic for T7> -Min(k 2 , k 4) but now behav-

ing algebraically, namely, M, - 1/2, as •=.oo in this region. The function

I, (() is given by L+(-a.) and hence L (a) behaves as (11/2 as 1= for

7-< Min(k 2 , k4 ), The product L+(Q ) L.(a.) is still L(Q.) in the strip because

of the fact that • (=z) -X(aL) (refer to the definition of X(CL) given by

equation (3. 70) ).

Reducing losses, C1 and d 2, to zero once L+ (cL) is obtained, yields

a simplification in the equations. Setting 6 1 and a' to zero results in k k k

kd = .k Also E-"0 in equations (3. 56) and (3. 63). Now G 2 (w) = -G (I )

with w real (refer to equations (3. 54) and (3. 55) defining Gl (w) and G2(w), re-

spectivcly) and the loss rd'iccd to zero. Therefore, we obtain for (3. 56) and

(3. 63), under the condition that the loss is zero,

H (CC) 6 +~~a.w (r ± (.j)) dc ~(3. 71)

71
(k~~~-oz) G.)~a( 2
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where:

• -Cos (4,1', )S (,u L ,

-,T [2 S;,Jb) ±4•,2 CosL(&,blj (3. 73)

-a- (3. 73. a)

and • is the contour shown in Fig. 6. Convergence of the integral in the de-

finition of I(ac), (3. 72), is ensured as G(w), (3. 73), goes to zero as w-* o.

A form of L+ (M.) that is extremely con-venient for numerical work

when the loss is reduced to zero is given by

It,• "- -e " V-_

Lt(•__FL~c LTI _- ,-#.a.)e zn7TJ L (Y

*[YS +Y', ~o ij• *-,(• - ) 74 (p + -L)

where: fi~

aa e

21 (3 75)

with X(cZ) defined by equa~ion (3. 70) with k : k , I(a..) by equation (3. 72),
0

G(,) by euattion (3. 73), P3 by equation (3.40), Y 1 by equation (3. 12), p the
nn

real positive zeros of (3. 48), and by setting k d • k , k = k wherever

they occur.
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3. 1. 4 Solution of the Problem:

The evaluation of the field quantities of interest is obtained by the

Fourier inversion integrals given in (3. 27) and (3. 28). The function L +(a.)

is given by (3. 74) and L (a) = L +(-c.). Within the waveguide section of the

structure, z > 0 and 0 < x < b, the modes are obtained from equation (3. 27).

The contour may be closed in the lower half plane enclo.-ing only pole-type

singularities. The calculus of residues gives the modes directly, in particu-

lar, the lowest order reflected mode (only reflected mode carrying average

real power) is

-'~'L~)L(-) S~.~(~) ~ 1Z(3. 76)

Hence, the reflection coefficient is

z 6il (3. 77)

22

The far field is again obtained by the use of the Huygen equivalent source in

the aperture x = b + 0 in a manner analogous to that described in sectinr' 2. 4.

The only difference is now we have an equivalent magnetic current in the aper-

ture. The results are

7rL4, "V,<S, a) (3. 781'-- C0 V+0
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2 2
with p - + 7O. ,0 e4, , and k = O o

In the results given in (3. 77) and (3. 78) the loss has been made negli-

gible, in fact, zero. The loss set at zero results in k = k and k d 'k 0id
o do

hence equation (3. 78). The loss will also be set at zero in the results that

follow.

The average real power reflected in the waveguide and the average

real power radiated in the space wave are

Normalized Reflected Power Wref 2IR (3. 79)

Normalized Radiated Power W =rad

sty,~ (e)* L as e)
+ o (3.80)

The normalization consists in the incident power being set to one. Recall that

the parameters are chosen so that only the lowest order mode propagates in

the waveguide. Therefore, the higher order reflected modes carry zero aver-

age real power.

The structure of Fig. 7 has the possibility of the existence of surface

waves. The surface wave modes for b • x are obtained from

dD -t Z'7-
L( Y6 - YX. ; -- .z

z 6: , -Nk) . , ('-y', 6) + yo Cc. • (Y, 6,• L z) _.z
'1 +• r 5" (3.81)

Use of L_ (a) = L(cL)/L +() is made in (3. 8i). The surface waves are given+aegie
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by a , the positive zeros of

with a- real and k < ýL n J k . The possibility of surface waves exists

because k > I is being considered here. The residues of the integrand of

(3. 81) at the surface wave poles give the surface wave modes as

M - p X - Z Ci.Z
6_• +g n-• <_i (3.82)

where:

62
et'

(3.83)

p (0 <p k ) is a positive root of (3. 48) with the luss set to zero.

M = number o' surface waves (number Af positive real zeros of (3. 48))

G = k + Pn (3.84)
0 o

S(3.851

The surface wave modes for 0 _ x b are obtained from

6 i + L C (3.86)

The residue of the integrandc of (3. 86) at the surface wave poles again gives

for the surface wave modes.
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R. es ,•-,=,

6 ~ L. en ShInx (3.87)

The surface wave modes are orthogonal in the following sense:

00 S E. Jz• =o•• • s s

Hence, the total real average power carried by the surface wave modes is the

sum of the power in each mode. This gives the normalized real average power

carried in the surface waves as

2. M 0- -p -6-- j

J) (3.89)

An inspection of the results given in. this section shows that once

L (O') is known ($"real), the radiation pattern o' the space wave, the power

reflected in the waveguide, the power carried in tne surface waves, and the

power carried in the space wave can be determined. These numerical calcu-

'ations are discussed and the results presented in section 4.

The radiation of a truncated parallel plate wavegu-de in free apace,

Fig. 1, with an £ in ident may be obtained f om the results of section i. 1 by
Y

setting the relative ielectric constant to orne. This value oI :h' dielectric



constant removes any surface wave phenomenon and hence any equations fhi

surface wave quantities are set to zero.

3. 2 TEM Excitation of a Surface Wave Structure

In this section we will obtain the excitation of the surface wave struc-

Lure, shown in Fig. 7, for a TEM mode incident in the waveguide. The inci-

dent field is

i -ikd z
H e d; 0 < x -b, VZ

y

with k given by equation (3. 4). The formulation of the problem fol]ows ex-

actly the one given in section 2 except that now the presence of the dielectric

must be taken into account. The results of the analysis are

H -(3. 9o)

__ I rý3. 9 1)

1 -X (3. 92)

0•C) V 'Z ( a

w he r e

Sy W!34

wh(3re-
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and

coo÷ -r

-7 ÷•r (3.95)

( ) C1 13 _X . (3.96)

Yb

wvith • I Y Y//Y1 and defined by equation (3. 12) ---id Y by (2. 16).

The function L( O.) lor this polarizatiox, of the incident field is

i Svk(Y,6)+Y I-.oSA(Y,6) (3.99)

This .ýmnction is factcred by thL r.etbod of section 3. 1. :5 by using the related

closed-region function

N~°; Y ;l Y l•ol(c -- ,Y ol( b i'L~__ (3. 1.00)

with the result

L U (c-t-) ( ) ) (3. 101)
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• •-'• o• 6.. -

~~~ e~ ___

L - (3. 102)

and k is defii.--I by equation (2. 4) and P n by (3. 40). The numbers pn are the

surface wave zeros given by the zeros of the characteristic equation.

K o (b = p, (-ip1 ) (3. 103)

W. (3. 104)

The funcLion 11( a) :s still given by (3. 56), X (a-) by (3. 70), and I(ac.) by

(3. b3), but now the functions GI (w) and G2(w) become for this problem

Si n___ _ +~ 4~( ) 6~ [Cos(4 + Z ki !Y .1 "( )
'"-) _s wK)-' , -i) ,.) (3. 105)Z,7r2[ioc (fos (Wb) + c., .G w1 .)

W, =(3.1]06)

G. ýCd = -- : -,_( ) (3. 107)

This results in L+ (., being analytic and benaving as C1/ as d--0 for

>->-Min(k., ko. Likewise L ( .) is analytic and behaves as L. ' as

Qr-ioofor 79< Min(k2, k).
- 4*

The form of I4a-) that is convenient for numerical calculations when

the loss o1 and a 2 are reduced to zero is given by
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a.6

."T(n, 4.

with •1 the contour shown in Fig. 6 anud G(w) given by

"- ( 3. '_110)

CO.

The K (a..) is given by (3. 70) witikd : •k k k= k replaced throughout.

TheI( L) used in >C (•..) nowbeoe

= ~-~(3. 112)

with G(c•) given in (3. 110). This integral converges as G(c•) behaves as Sin(w)

for large •0 The pn become the positive~ real zeros of (3. 103) with kd : = ko
o 1

The results of interest for this problem are obtained as was done in
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section 3. 1. 4 and are merely stated here. The normalized (incident energy

set at one) reflected power

W6 1 (3. 113)

Th': Cfollows since the parameters are restricted to values such that only the

lowest order mode can propagate in the waveguide. That is, $, k 0 7T /b.

The normalized power radiated in the space wave is

K I r LkC 9

tad( I L-.iCos 6e (3.114)
,Z'7r * 0 kos

with the radiation pattern given by (0 e - )

hYI- --, C÷se) (3. 115)

The normalized energy in the surface waves becomes

______ ____ Z APihL F l (3. 116)

where M is the number of surface waves and

Dresm = - p" (3. 117)(.%-," k°). L( IOL V, ED
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Dam cL, ~ ~~~)~ p~c~~L ~,o~h)+hh ~s/ ) (3. 118)

cL - (3. 119)

- -> 0 (3. 120)

These numerical calcuilations are discussed and the results presented in sec-

tion 4 along with those for the TE-polarization.

3. 3 Excitation of an Incompressible, Isotropic, Plasma Slab

The structure in question is stil eiven by Fig. 7 but with one change.

The dielectric betwren 0 4_ x < b is replaced by an incompressible, isotropic,

pl~sma inedium. This plasma medium behaves as a dielectric with a relative

dielectric constant less than 1. This results from the fact that the relative

electric constant for this medium is

S- -X) (3. 121)

(3. 122)

with wN the plasma frequency and cw the wave frequency, for example Budden

[1964].

Values of the relative d4 lectric constant less than zero are not of any

interest as it is impossible to have propagating waves in the waveguide. How-

ever, there are propagating modes for th(e relative dielectric constant between

zero and one. It can be shown, for this rarge of • , that the structure will

not support surface waves.



77

The analysis of this problem m~y be extracted from sections 3. 1 and

3. 2 by considering the effect of 0 < jk < I on the analysis. It is found that the

only change occurs in G(w), given by (3. 73) for the TE case and by (3. 110) for

the TEM case. Recall that w1 in these equations is

1 =O -1) k + 2)1/2 (3. 123)

with wh varying from zero to infinity. The q~uantity (j< -1) k 2is now negative.
0

Hence, for values of i <N _f17-k 0 becomes imaginary. The choice, oi the

sign of the imaginary number is immaterial as G(w) is not a multivalued func-

tion of o. Therefore, the results of sections 3. 1 and 3. 2 stand unaltered for

the case of 0< •/<i. However, all surface wave phenomea is non-existent for

this range of it and the equations in those sections must be int',rpreted accord-

ingly.

3. 4 Discussion of the Method for the D electric Slab Structu-'

Basically the related C-R structure was used only to obtain the O-R

factorization. However, the O-R and C-R solutions may be related as was

done in section 2. 5 in the following vray. To be specific, we will discuss the

TE case.

The function L+ ( .) given by (3. 57) is the limit, a, c-P-0while a-c=',

of K+ (C) given by (3. 38) if we include the X (CL), (3. 41), in K +(CL) Irecill 'natx•c)

makes K+ (L) behave algebraically). This is true if the limit of (3.41) is (3. 70).

We may write (3. 41) as

• - •-mmt ..... "-t~.i --- -.- - - -- - ----- Y --
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"?1, (3. 124)

Convergence of the series is entured because 1 = nir/a + O1l/n) for large n.

n

The function Q(dL) is equal to )ý (C.) in section 2. 5 and is given by (2. 104).

Recall that the 1 are the roots ol equation (3. 36). Taking the limit of C (d.)n

given by (3. 124) yields

(2. -- q 00(3. 125)
0.-C =b
with I( c) given by (3. 63). The limit of Q(c.) had alread'f been obtained in sec-

tion 2. 5; refer to equation (2. 109). Now equation (3. 125) U• ] (-), (3. 70) for

the O-iR prc'blm. Therefore, the limit of K+ (M) is L+ (C). Henze, one may

now show thpt the limit of C (x, a. ) and DI(x, M.), given by equations (3. 30)

11and (3. 31), respectively, for the C-P structure, become Al(X, a..) •-.n'•lX, a..),

given by equations (3. 25) and (3. 26), respectively, fur the O-R structure.

Therefore, the complete C-R solutirii becomes, in the limit, the O-R solution.

This means that instead of formulating the O-R problem one ,_ould obtain the

solution by formulating a related C-R problem and taking the limit ol its solu-

tio. as dictated by the physics. This phenomena is wriat Talanov (1959,] sug-

gested would happen. In fact, he solved the C-R problem for a TEM exci-

tation and calculated the energy in the slow waves of the ihomogeneouslv

filled gulde and claimed that their value as a -- oo is the energy in the sur-
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face waves.

In section 2 we obtained the factoriz: tion for the C-R problem in a

particular form. The advantage of doing this should now be obvious. As a

and c become lar'e, the series which •ccrrred could be !:ecast as integrals

providing the spacing between adjacent zeros of the characteristic equations,

F I(w) and F (w), was known. This representation yielded the information as

the function obtained, -b + G(w), by taking the limit of the integral representa-

tion, is the desired information. La particular, -b + G(w), should be the differ-

ence of the inverse of the spacing of the zeros of the characteristic equations.

That this is so is verified in section 4 1vitn numerical calculations.
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4. NUMERICAL PESULTS

The usual field quantities of interest ir p~roblems of this type are ob-

tainable once L +(d) is known (drý_al). That is, the average power radiated

in the space wave, reflected in the waveguide, and trapped in the surface

waves (4f any) and the radiation pattern of the space wave are given as func

tions of IL+(d+)i . TAis can be seen by referring to equations (3. 79), (3. 30),

(3. 89), and (3. 78) for the TE polarization and (3. 113), (3. 114), (3. 1 16), and

(3. 115) for the TEM excitation.

The function I L+(d')I is given in ccnvenient form for numerical pro-

cessing by (3. 74) and (3. !08) for the TE and TEM polarizations respectively.

To indicate what is involved in tbe evaluation of I L+(6)I , a close looik at the

TE case is made. The evaluation of IL+ (d)I for the TEM polarization will be

similar. Taking the absolute value of (3. 74) for real arguments gives

so M (1

iL,ýO~I s(Y.6) 1 T 0 k -rj,

The real part of H (I) is given by
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L '77_ -

This :esult s obtained sinre the square root term is purely imaginary •or

S> k . T h e d e fin itio n o f 0 n (3 . 4 0 ), a n d th e fa c t th a t w e a r e c o n s id e r in g th eC ns

case where only one mode propagates in the waveguide (I <fi k< Z1&))

gives

00

n-I (4.3)

Therefore, equation (4. 1) becomes

I/2.

(4.4)
I YZi (YW ) +-Y1  Y, $,6)

with H2 (d) given by
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S(4.5)

and G(w) -iven by (3. 73). The convenience of L+ (W. as given in '4. 4) is i ow

obvious. We are left with only a finite integral to evaluate.

"W(hen Idl is less than k , the integrand of equation (4. 5) becomes sin-

2_ 2 1/2.iawehvrdud
gular at w = w ( -0 ) This results from the fact tatwe have reduced

the loss to zero. However, this is an integrable singularity, as one expects,

and may be handled in the following way. Rewriting equation (4. 5) for 0<_&5 k 0

gives

(4.6)

The first integral in equation (4. 6) is no longer singular at w and is conven-

iently handled by a digital computer. The second integral in (4. 6) can be ob-

tained in closed form. For negative values of d we have, H (•) -H,(le! I.

Therefore, H2 (C) is obtained from (4. 61 for all d and hence L+(-)I is con'en-

iently calculated. The characteristic response of the structures for both TE

and TEM excitations will be gi'.,n in graphic;-l form in what follows.

In going irom a series to an integral, which occurs when obtaining
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L+(CL) and L_ ((.) by letting a and c approach infinity in the representation of

K(a.), we needed knowledge of the spacing of the zeros of the characteristic e-

quatic.is. We concluded that the function b/r, - G(•.) is the difference of the in-

verse of the spacing of tie zeros o: t.he c:iaracteristic equations FI () and

-. (a) as a, c --wo .o 'r eAampl,ý, +e characteristic equations are given by

(3. 45) and (3. 46) and G(w) by (3. 13) for the TE polarization. This conclusion

r ;V be -verified by actually finding the zeros of Fl (w) and F 2 (L.) and seeing if

indeed the zero-i behave, 3 a and c approach infinity, in a manner given by the

function b - G(G4). The result ol this is shown in Fig. 9 for the TE excitation.

One can see thkat, for c,/b equal to 80, the curve obtained from a knowledge of

the zeros is identical to the theoretical curve given by b/iT-G(..). For c/b = 8

there is some difference, as expected. That is, only in the limit as a--9'

does G(w) hold.

The response of the structure to a TL polarized source is shown in

Figs. 10 to 15. The relative dielectric constant (IC.) has three dist.,'ct ranges:

a) the plasma phenomena with 0 < 1. 0; b) free space radiation with

1. 0; c) the surface wave phenomena with K 1 1. 0. The respoxise of

the structure fcr -Palues of K in each of th:-se ranges is given in Figs. 1O, I i,

12, and 13. Recall that these are normalized -values with the incider.t 9ntergy

set at I or 100 per cent and the maximum far field vilue set at one.

An inspection of Figs. 10 and 11 shows that it ib possible to have all

the incident power radiated in the space wave. This is also true for the sur
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Fig. 10 Power distribution and far field patterns for an isotropic, incom-

pressible, TE excited, plasma slab.
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Fig. 11 Power distribution and far field patterns for a TE excited, par-
allel plate waveguide radiating in free space.
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Fig. .2 Power distribution and far field patterns for a TE excited surface

wave structure.
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Fig. 13 Power dist~ribution for a TE excited surface wave structure.
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Fig. 14 Power distribution and far field patterns for a TE ex(.ited structure

as a function of g*
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face wave structure, shown in Fig. 1?, until the structure starts to support

surface waves. Once surface waves can be supported, a transfer of power

from the space wave tc the surface wave occurs. The structure will sIppor t

surface w&ves only when NXIk b>r/,. The incident power may all beo

transferred to the surface waves by a su.•table choice of parameters as seen

in Fig. 13. There are no far field patterns plotted in F'g. 13 as tl'e power ra-

diated in this case is negligible cormpoared to the power carried in the si:rfac-

waves. Fig. !3 also shows the effect of two surface w:-ves existing on the

structure. Thi- is the maximum nu--r.ber tlhat the structure can support since

we assumed that the parameters are such, that only the low -st order mode can

propagate in the waveguide. The effect of holding k b con i,.ant and varving i0

is shown in Figs. 14 and 15.

The r Iponse of the structure to a TEM polarized source is g:vn-i in

Figs. 16 to 19. The tructure is again quite efficier,* as the reflected power

may be made negligible wit-h ail the incident power rrdiated in the spacE wa,'e

(refer to Figs. .I16 and i 7). When ,AC is grea t er than one the structure uppcrts

a surface wave and again the power is transferred from the space w.v- +o toe

surface wave as seen in Fig. 18. Only one s-'rface wave is supported wit1 - the

values of paramete:s that permit oily the lowest order niode to propagate in

the waveguide. The ef'ect of -arying n is shbwn in Fig. 19.

A -heck on the algebra and computer results .s possible bv using the

conservation of energy principle. rbe surn. of the power radiat-d in #be space



92

wave, the power reflected in the waveguide, and the power carried by the sur-

face waves (if any) must equal the incid'nt power. This equality was obtained

to within 0. 5 per cent. This also gave a check on the far field patterns as the

radiated power is equal to a constant times the integral of the square of the

far field funsction. A verification of the numerical work for the radiated power

is then an indirect verification of the far field pattern.

A comparison of the numerical results for the TEM excitation of the

surface wave structure, given in Fig. 18, with those published by Angulo and

Chang [1959) shows that they are not in agreement. The results given here

should compare with their results with "h" set to zero. Their results show

that the reflected power has a maximum at k b approximately 1. 25 with a0

corresponding minimum in the power radiated. Our results do not display

these phenomena. Another paper by Angulo and Chang [1958] gives the results

for a cylindric I geometry. The results publishee there have the functional

f -m of our results given in Fig. 18. One would not expect the change in the

geometry f,-m cylindrical to rectangular to cause the change in response as

found in their two papers.
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prissible, TEM excited, plasma slab.
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5. CONCLUSION

The solutions of three Wiener-Hopf type boundary value problems

have been given in this work. The problem of a parallel plate waveguide with

one Dlate truicated and radiating in free space was solved in section 2. A ver-

ification of the factorization was obtained by reference to the solution of a semi.

infinite parallel plate waveguide radiating in free space given in Noble [1958'.

The function to be factored is the same for both problems.

The excitation of a dielectric slab (surface wave structure) and the .-x

citation of an incompressible, isotropic, plasma slab by means of a truncated

parallel plate waveguide were given in section 3. Both TE and TEM polariza-

tions of the exciting field were considered. The results for the TEM excitation

of the surface wave structure were compared with those obtained by Angulo

and Chang [19591 and the differences noted. They used a formal factorization

procedure in their paper. The graphical results for the TE excitation of the

surface wave str,.c~ure and the graphical results for both TE and TEM excita-

tions of the incompressible, isotropic, plasma slab presented in section 4 have

not, to the best of the author's knowledge, been givw.-n elsewhere.

The factorization, one of the key steps, was obtained by a technique

described in this work. The factorization was obtained by taking the limit, as

the transverse dimension approaches infinity, of the function and factorization

appropriate to the related closed-region structure. A closed form of the fac-

torization was obtained only in section l. In the more difficult problems dis-
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cussed iv section 3, the factorization was in a form convenient for numerical

processing.

This technique for obtaining the factorization is certainly applicable

to other open-region problems as discussed in section 2. 5. For example

this technique should prove useful for finding the electromagnetic fields asso-

ciated with an incompressible, anisotropic, plasma slab when excited by a

truncated parallel plate waveguide.
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APPENDIX

Region of Analyticity of a Function Given by ar- hitegral RE•p'esentation

ILet G(a ) be defined by equation (A- 1)

G(Z.) a •(L (A-1)

The conditions under which G( A) is analytic ar,ý given in NoblP [19581, page

11, and are presented here for convenien-e.

Theorem: Let g( c4, -1 ) f( I )h( a. , sat sfv the conditions

(i) h(C , L ) is a continuous function of the complex variables CL and •

where a. lies inside a region 1, and I lies on a contour C.

(ii) h(a, T ) is a regular function of c. in R for every -S on ..

(iii) f('S) has only a finite number of finite discontLnuities or C and a

finite rnumbt& of -naxima and minima on any finite part of C.

(iv) f(:) is Lounded except at a fini.e number of points. If -" 0 is

such a point, ,so that 6(a., c . as S o then

C -S

ey'.sts '1i1ere the not-.tion ,C - & 1 denotes the contour C apa't from a small

lengtih . surrt,,.iiding 1f0V and limr ( 6 -0- "- denotes tfe limit as this ex-

cluded length tends to zero. The limit must be approached uniformly wher a.

lie,, ii ary closAd ýorn,?m R: wihin R.

(v) If C ict, .o L-finitV then any bounded pdrt of C: must be smooth

and ccnditions (i and (ii) nv.st be satisfied for an', Lounded part of C. The ,n-
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' , .e .ntegral defining G(a.) must be uniformly convergent when M lIi-s in

an, c:!osed domain R' within R.

Then G(a.) defined by (A-i) is a regular function of C. in R.
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c1.osel-rýŽgiorn bo-indary valvue problem yields a function of a complex variable which
canl b,.- factor.,d 'The factor'ization )f the flunctior, fo~r tu~e open-region boundary
value j=Aeni obtained b* taking the iimit, 9s a pararneteý.r app-oache~s irf--nity
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13. ABST."CT (continued)

of tA~e function and factorization appropriate to the closed-region strivture. By
this means the factorization and hence the solut'on to the open-region ooundary
value iroblen. is obitai:fd.

It is also found that the limiting procedure may be used to obtain more than
just the open-region factorization- It is shown that the limit of the comir'ltt
clkised-region solution becomes the open-region solution. H!ence, U. s yteil&- orL,
possible method for the solution of ý. oblems of this type.

The results of .hc: numerical -imputations are presenten. Th se include the
avra~e power relucted in the wavegulde, the average power radiated i.1 the space
wave, the av rage power trans-ritted by the s rface waves, and t~e radiatixu p•"ter,-
"of the spree wave


